Multidimensional Magic Angle Spinning NMR Spectroscopy for SiteResolved Measurement of Proton Chemical Shift Anisotropy in Biological Solids

Guangjin Hou, ${ }^{\dagger, \dagger, \delta}$ Sivakumar Paramasivam, ${ }^{\dagger, \delta}$ Si Yan, ${ }^{\dagger}$ Tatyana Polenova, ${ }^{*, \dagger, \dagger}$ and Alexander J. Vega ${ }^{*}, \dagger$
${ }^{\dagger}$ Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
${ }^{\ddagger}$ Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States

S Supporting Information

Abstract

The proton chemical shift (CS) tensor is a sensitive probe of structure and hydrogen bonding. Highly accurate quantum-chemical protocols exist for computation of ${ }^{1} \mathrm{H}$ magnetic shieldings in the various contexts, making proton chemical shifts potentially a powerful predictor of structural and electronic properties. However, ${ }^{1} \mathrm{H}$ CS tensors are not yet widely used in protein structure calculation due to scarcity of experimental data. While isotropic proton shifts can be readily measured in proteins even in the solid state, determination of the ${ }^{1} \mathrm{H}$ chemical shift anisotropy (CSA) tensors remains challenging, particularly in molecules containing multiple proton sites. We present a method for site-resolved measurement of amide proton CSAs in fully protonated solids under magic angle spinning. The approach consists of three concomitant 3D experiments yielding spectra determined by either mainly ${ }^{1} \mathrm{HCSA}$, mainly ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ dipolar, or combined ${ }^{1} \mathrm{H}$ CSA and ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ dipolar interactions. The anisotropic interactions are recoupled using $R N$-sequences of appropriate symmetry, such as $R 12_{1}^{4}$, and ${ }^{15} \mathrm{~N} /{ }^{13} \mathrm{C}$ isotropic CS dimensions are introduced via a short selective ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ cross-polarization step. Accurate ${ }^{1} \mathrm{H}$ chemical shift tensor parameters are extracted by simultaneous fit of the lineshapes recorded in the three spectra. An application of this method is presented for an 89 -residue protein, $\mathrm{U}-{ }^{13} \mathrm{C},{ }^{15} \mathrm{~N}$-CAP-Gly domain of dynactin. The CSA parameters determined from the triple fits correlate with the hydrogen-bonding distances, and the trends are in excellent agreement with the prior solution NMR results. This approach is generally suited for recording proton CSA parameters in various biological and organic systems, including protein assemblies and nucleic acids.

INTRODUCTION

Hydrogen bonding is a main interaction stabilizing the secondary and tertiary structure elements in proteins. Chemical shielding interactions being exquisitely sensitive to the local environment have long been used as an NMR probe of structure and hydrogen-bonding interactions. ${ }^{1-4}$ In particular, the chemical shift (CS) of protons forming hydrogen bonds has long been a subject of interest in solid-state NMR, ${ }^{5-13}$ and the CS of participating heteronuclei has been investigated as well. ${ }^{14,15}$ More recently, the relationship between proton CS tensor components and hydrogen-bond formation has become a subject of study in solution NMR as well. ${ }^{16-20}$ In the case of protons, not only has the downfield shift of the proton isotropic shift due to a shortening of the H -bond donor-acceptor distance $\mathrm{OH} \cdots \mathrm{O}$ or $\mathrm{NH} \cdots \mathrm{O}$ been well documented, ${ }^{3,5-9,12,13}$ but evidence has also been reported of the simultaneous increase of the chemical shift anisotropy (CSA). ${ }^{5,16-18,20}$ These findings suggest that a relationship must naturally exist between the CS tensor components and the isotropic shift, a conclusion that has indeed been verified in several experimental studies. ${ }^{5,17,19,20}$ Two other common observations are that the principal axis of the least-shielded component is close to being
perpendicular to the peptide plane and that the most-shieldedcomponent axis makes a small angle with the NH bond direction, mostly less than 15° and never larger than $35 .^{18-22}$ The anisotropy of the chemical shift tensor could actually be a more sensitive measure of hydrogen-bond strength than the isotropic shift, ${ }^{9,12}$ and it is expected that the amide proton CS tensor in peptides and proteins can be a highly informative probe in protein structure determination. ${ }^{10,13}$

Highly accurate quantum chemical protocols have been developed for computation of ${ }^{1} \mathrm{H}$ magnetic shielding tensors in peptides and proteins in the various structural contexts. ${ }^{23,24}$ In particular, ab initio calculations of amide proton chemical shift tensors have confirmed the experimentally observed relationships between the hydrogen-bond structure and the components and orientation of the proton CS tensor. ${ }^{11,20,25,26} \mathrm{Ab}$ initio calculations also suggest that the correlation of amide proton CSA tensor components with hydrogen-bond lengths may be more complex than what has been suggested in earlier reports on CSA of hydrogen bonds. For instance, Sharma et al.

[^0]found that tensor components in addition to depending very strongly on the hydrogen-bond length also exhibit a weaker dependence on the hydrogen-bond angle. ${ }^{11}$ Parker et al. concluded from DFT calculations that, while the hydrogenbond geometry is the most important CSA determinant, longer-range cooperative effects of extended hydrogen networks make significant contributions. ${ }^{25}$ Furthermore, Suzuki et al. recently observed, based on their calculations, that the origin of isotropic CS differences among protein amide protons is predominantly the magnetic anisotropy effect from the $\mathrm{C}=\mathrm{O}$ acceptor. ${ }^{26}$ A more complete understanding of the effects of molecular structure on the anisotropy of the proton chemical shift will undoubtedly be served by a broad database of experimental results, the current scarcity of which has often been held responsible for stagnant progress in this area. ${ }^{11,18,19,26}$

Indeed, to date only a rather limited number of experimental amide proton CSA measurements have been reported. In solid systems, only three proton CSA measurements of peptide bonds have been presented in the literature. These were all performed on nonspinning low-molecular-weight peptide samples, using MREV8 multiple-pulse NMR, ${ }^{27}$ single-crystal deuterium NMR, ${ }^{21}$ or 3D SLF/LG NMR. ${ }^{22}$ More recently, two methods were developed for extracting amide proton CSA data from proteins in solution. One of these employs crosscorrelated relaxation of ${ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}$ spin pairs, ${ }^{16,17,19,28}$ and the other measures the residual chemical-shift anisotropy of the protons in liquid-crystal dissolved proteins. ${ }^{18}$ A combination of these two methods produced a highly accurate set of CSA tensor parameters in a protein. ${ }^{20}$

The lack of known attempts of such measurements in solid proteins is presumably due to the strong homonuclear interactions and the difficulties of extracting accurate proton CSA tensors in a site-resolved fashion under magic angle spinning (MAS) with the currently available experimental protocols. As to measurements of proton CSAs of other chemical moieties under MAS conditions, two 2D approaches have been reported where the CSA interaction is recoupled in the indirect dimension. Brouwer and Ripmeester achieved the recoupling by application of the $R N$-symmetry-based pulse sequence $R 18_{2}^{5}{ }^{13}$ while Duma et al. employed rotary-resonance spin locking. ${ }^{29}$ In both approaches, the proton signal was detected in the direct dimension, either under free evolution ${ }^{13,29}$ or under resolution enhancement by PMLG. ${ }^{13}$ In these experiments, different proton sites could be measured individually thanks to the fact that the samples had relatively sparse proton spectra. However, because direct proton detection at MAS frequencies lower than 40 kHz does not produce the required resolution in protein spectra, any pulse sequence to be employed for ${ }^{1} \mathrm{H}$ CSA measurements requires an additional resolution-enhancement step.

The objective of the present work is to develop an MAS method for measuring amide proton CSAs in peptides and proteins. For this purpose, we employ the $R N$-sequences of appropriate symmetry, which, when applied to the protons, recouple their CSA interaction and their heteronuclear dipolar interactions, while they decouple to first order the isotropic shift and the homonuclear proton dipolar interaction. ${ }^{13,30-32}$ For this study, we chose the $R 12_{1}^{4}$ symmetry sequence as it is well suited for our experimental conditions: the range of available MAS frequencies ($10-20 \mathrm{kHz}$) and the radio frequency (rf) power. The CSA is measured by detecting the evolution of the ${ }^{1} \mathrm{H}$ spin state under $\mathrm{R} 12_{1}^{4}$ irradiation, resulting
in what we will call $R N-{ }^{1} \mathrm{H}$ spectra. To distinguish between individual proton signals, we resorted to detection through selective signal transfer to the adjacent ${ }^{15} \mathrm{~N}$ by short-contacttime cross-polarization. The presence of this nearby ${ }^{15} \mathrm{~N}$ introduces the recoupled ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ dipolar interaction and allows for two options. Either it is decoupled by irradiation of the ${ }^{15} \mathrm{~N}$ spins or it is left intact so that it can provide additional information that turns out to be highly beneficial for the determination of the proton CSA parameters, as demonstrated below. Thus, we distinguish between undecoupled $R N-{ }^{1} \mathrm{H}$ spectra, to be called $R N_{-}{ }^{1} \mathrm{H}\left({ }^{15} \mathrm{~N}_{\mathrm{und}}\right)$, and ${ }^{15} \mathrm{~N}$-decoupled $R N-{ }^{1} \mathrm{H}$ spectra, to be called $R N-{ }^{1} \mathrm{H}\left({ }^{15} \mathrm{~N}_{\text {dec }}\right)$. A concomitant measurement of ${ }^{15} \mathrm{~N}$ evolution under $R 12{ }_{1}^{4}$ irradiation applied on ${ }^{1} \mathrm{H}$ spins, resulting in what we will call $R N-{ }^{15} \mathrm{~N}$ spectra, can be further included in the experimental repertoire for the sake of refining the reliability of the measured interaction parameters. It is identical to earlier $R N_{n}^{\nu}$ experiments for obtaining dipolar spectra of ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ or ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ spin pairs. ${ }^{31,33-37}$ The method thus culminates in the curve fitting of up to three $R 12_{1}^{4}$ spectra: $R N-{ }^{1} \mathrm{H}\left({ }^{15} \mathrm{~N}_{\text {und }}\right), R N-{ }^{1} \mathrm{H}\left({ }^{15} \mathrm{~N}_{\text {dec }}\right)$, and $R N-{ }^{15} \mathrm{~N}$.

Following a theoretical description of the average-Hamiltonian approach for simulating the three kinds of spectra and a brief discussion of theoretical and experimental circumstances that may affect the accuracy of the method, we turn our attention to the experimental $R 12_{1}^{4}$ results for an 89-residue protein, U- ${ }^{13} \mathrm{C},{ }^{15} \mathrm{~N}$-CAP-Gly domain of mammalian dynactin. The biological significance of CAP-Gly protein was discussed in our previous work, ${ }^{38}$ and over the past several years we have pursued structural and dynamics characterization of CAP-Gly to understand its interactions with microtubules at atomic level and the mechanism of the disease-associated point mutations. ${ }^{39}$ ${ }^{1} \mathrm{H}$ CSA tensors are very sensitive to hydrogen-bonding environments and to secondary structure, as well as to motions occurring on time scales of submilliseconds and faster, and, therefore, their knowledge is expected to provide important insights on the biological functions of CAP-Gly.

At 19.9 T, ${ }^{1} \mathrm{H}$ CSA lineshapes measured for 42 residues in CAP-Gly in three sets of three-dimensional experiments, $R N-{ }^{1} \mathrm{H}\left({ }^{15} \mathrm{~N}_{\mathrm{und}}\right), R \mathrm{~N}-{ }^{1} \mathrm{H}\left({ }^{15} \mathrm{~N}_{\mathrm{dec}}\right)$, and $R \mathrm{~N}_{-}{ }^{15} \mathrm{~N}$, are well-resolved, and the resulting ${ }^{1} \mathrm{H}$ CSA tensors have the general properties that are in accord with those that have been observed in prior solution NMR work on amide protons in ubiquitin ${ }^{19}$ and in GB3. ${ }^{20}$ We present the analysis of the ${ }^{1} \mathrm{H}$ CSA tensor components in the context of the hydrogen-bonding environments determined from the MAS NMR structure solved in our laboratory (PDB deposition code 2 m 02). Our work demonstrates that accurate amide proton CSA tensors can be recorded in a site-specific fashion in fully protonated systems, making our approach suitable for measurements of ${ }^{1} \mathrm{H}$ CSA parameters in heteronuclear spin pairs, such as ${ }^{1} \mathrm{H}^{13} \mathrm{C},{ }^{1} \mathrm{H}^{15} \mathrm{~N}$, or ${ }^{1} \mathrm{H}^{31} \mathrm{P}$ in proteins, protein assemblies, and other macromolecular and organic systems in the solid state.

EXPERIMENTS AND MATERIALS

Materials. U- ${ }^{13} \mathrm{C},{ }^{15} \mathrm{~N}$-CAP-Gly domain of mammalian dynactin was prepared from E. coli; the solid-state sample was generated by controlled precipitation polyethylene glycol by slow addition of solution of 32% PEG- 3350 to the solution of 24.0 mg of CAP-Gly (40 $\mathrm{mg} / \mathrm{mL}$), dissolved in 10 mM MES buffer ($10 \mathrm{mM} \mathrm{MgCl} 2, \mathrm{pH} 6.0$), as described previously ${ }^{38} 24.4 \mathrm{mg}$ of precipitated protein was transferred into a 3.2 mm Bruker rotor and sealed using standard Bruker rotor tools.

Solid-State NMR Spectroscopy. The experiments on $\mathrm{U}-{ }^{13} \mathrm{C},{ }^{15} \mathrm{~N}$ -CAP-Gly domain of mammalian dynactin were conducted on a 19.9 T
narrow bore Bruker AVIII spectrometer, operating at a Larmor frequency of 850.4 MHz for ${ }^{1} \mathrm{H}, 213.8 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$, and 86.2 MHz for ${ }^{15} \mathrm{~N}$. A 3.2 mm Bruker EFree MAS triple-resonance HCN probe was used. The experiments were acquired at an MAS frequency of 14 kHz , controlled to within $\pm 0.010 \mathrm{kHz}$ using the Bruker MAS controller. The actual sample temperature was maintained at $4^{\circ} \mathrm{C} \pm 0.2{ }^{\circ} \mathrm{C}$ throughout the experiments.

The pulse sequences applied in this work are schematically shown in Figure 1. To describe the spin dynamics associated with them, we

Figure 1. Pulse sequences for (a) $R N-{ }^{1} \mathrm{H}\left({ }^{15} \mathrm{~N}_{\mathrm{und}}\right)$ and $R N-{ }_{-}^{1} \mathrm{H}\left({ }^{15} \mathrm{~N}_{\text {dec }}\right)$, and (b) $R N-{ }^{15} \mathrm{~N} 3 \mathrm{D}$ experiments. Rotor synchronized $R 12_{1}^{4}$ symmetry rf pulses are applied during t_{1} evolution time to reintroduce ${ }^{1} \mathrm{H}$ CSA or ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ dipolar interactions under MAS conditions. Empty and solid rectangles denote $\pi / 2$ and π pulses, respectively. In (a), the time dependence of ${ }^{1} \mathrm{H} z$-magnetization is monitored, either with application of the ${ }^{15} \mathrm{~N}$ decoupling π pulses $\left(R N-{ }^{1} \mathrm{H}\left({ }^{15} \mathrm{~N}_{\text {dec }}\right)\right.$) or without $\left(R N-{ }^{1} \mathrm{H}\left({ }^{15} \mathrm{~N}_{\text {und }}\right)\right)$. This optional decoupling pulse is colored in blue-gray. Site-selective ${ }^{1} \mathrm{H}$ detection is accomplished by short-contacttime CP to ${ }^{15} \mathrm{~N}$. In (b), the time evolution of ${ }^{15} \mathrm{~N} x$-magnetization is monitored with refocusing of the chemical shift over a constant evolution period T. ${ }^{15} \mathrm{~N}-{ }^{13} \mathrm{C}$ SPECIFIC-CP magnetization transfer is introduced following the t_{2} evolution period, with the subsequent detection of the ${ }^{13} \mathrm{C}$ signal during the t_{3}.
assign the symbols I and S to the ${ }^{1} \mathrm{H}$ and ${ }^{15} \mathrm{~N}$ spins, respectively. The $R N-{ }^{1} \mathrm{H}$ spectra are obtained with the sequence shown in Figure 1a. In these experiments, the beginning spin state is I_{z}, and the time dependence of I_{z} coherence is monitored, either with or without decoupling of the $I-S$ interaction. The $R N-{ }_{-}^{15} \mathrm{~N}$ spectrum is measured with the sequence shown in Figure 1b, which is similar to earlier $R 18_{n}^{\nu}$ experiments used to obtain heteronuclear dipolar spectra. ${ }^{31-34,36,40}$ In this pulse sequence, the spin state is prepared in the S_{x} state, and the evolution of the S_{x} coherence is monitored.

In the $R 12_{1}^{4}$-symmetry-based sequence, the basic R element is a π pulse with its radio frequency (rf) field strength and phases determined by the symmetry properties of the pulse sequence. ${ }^{30-32,36,41-43}$ An $R 12_{1}^{4}$ cycle consists of one rotor periods and contains 12 proton π pulses having rf amplitude 6 times the MAS frequency and phases alternating between 60° and -60°. In the $R N-{ }^{1} \mathrm{H}\left({ }^{15} \mathrm{~N}_{\text {dec }}\right)$ experiment, a π pulse was applied on the ${ }^{15} \mathrm{~N}$ channel at the center of each $R N$ cycle to decouple the ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ heteronuclear dipolar interactions. For the $R N-{ }^{1} \mathrm{H}\left({ }^{15} \mathrm{~N}_{\text {und }}\right)$ experiment, the ${ }^{15} \mathrm{~N} \pi$ decoupling pulse was omitted. For both $R N-{ }^{1} \mathrm{H}\left({ }^{15} \mathrm{~N}_{\text {dec }}\right)$ and $R N-{ }^{1} \mathrm{H}\left({ }^{15} \mathrm{~N}_{\mathrm{und}}\right)$ experiments of the $\mathrm{U}-{ }^{13} \mathrm{C},{ }^{15} \mathrm{~N}$-CAP-Gly, a decoupling π pulse with rf field strength of $78-80 \mathrm{kHz}$ was applied on the ${ }^{13} \mathrm{C}$ channel at the center of each R cycle. The dwell time in the $R 12_{1}^{4}$
dimension was set equal to either one $\left(R N-{ }^{1} \mathrm{H}\left({ }^{15} \mathrm{~N}_{\mathrm{und}}\right)\right.$ and $\left.R N-{ }^{15} \mathrm{~N}\right)$ or two $\left(R N-{ }^{1} \mathrm{H}\left({ }^{15} \mathrm{~N}_{\text {dec }}\right)\right)$ rotor periods. Sixteen points were acquired in the $R 12_{1}^{4}$ dimension, and 48 points were collected in the ${ }^{15} \mathrm{~N}$ evolution dimension. 128 and 72 scans were used for the $R N-{ }^{1} \mathrm{H}\left({ }^{15} \mathrm{~N}_{\text {dec }}\right)$ and $R N-{ }_{-}^{1} H\left({ }^{15} \mathrm{~N}_{\text {und }}\right)$ experiments, respectively. The pulse delay was set to 2.5 s for all experiments.

The ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ CP contact time for the $R N-{ }^{1} \mathrm{H}\left({ }^{15} \mathrm{~N}_{\mathrm{und}}\right)$ and $R N-{ }^{1} \mathrm{H}\left({ }^{15} \mathrm{~N}_{\text {dec }}\right)$ line shape measurement was set equal to two rotor periods $(142.86 \mu \mathrm{~s})$; and for the $R N-{ }^{15} \mathrm{~N}$ experiment to $1700 \mu \mathrm{~s}$. ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ cross-polarization was performed by applying a linearly ramped rf field with the center of the ramp set at 59 kHz on ${ }^{1} \mathrm{H}$ nuclei ($80-100 \% \mathrm{ramp}$), and a constant-amplitude rf field at 45 kHz on ${ }^{15} \mathrm{~N}$. The band-selective magnetization transfer from ${ }^{15} \mathrm{~N}$ to ${ }^{13} \mathrm{C}_{\alpha}$ was realized by using 4.6 ms SPECIFIC-CP with tangent amplitude ramp on the ${ }^{13} \mathrm{C}$ channel (center at 21 kHz). The ${ }^{15} \mathrm{~N}$ and ${ }^{13} \mathrm{C}$ rf field strength for the SPECIFIC-CP were set to 2.5 times and 1.5 times the MAS frequency, respectively. ${ }^{1} \mathrm{H}$ CW decoupling was applied during the SPECIFIC-CP period with rf field strength of 90 kHz . SPINAL- 64 decoupling ${ }^{44}$ with rf field strength of $80-83 \mathrm{kHz}$ was used during the acquisition period $\left(t_{3}\right)$ and during the indirect ${ }^{15} \mathrm{~N}$ evolution time $\left(t_{2}\right)$. $\mathrm{A}{ }^{13} \mathrm{C} \pi$ pulse with of field strength of $78-80 \mathrm{kHz}$ was applied at the center of t_{2} to decouple the ${ }^{15} \mathrm{~N}-{ }^{13} \mathrm{C} J$-couplings.

Spectral Processing and Simulations. The $R N_{n}^{\nu}$ spectrum of a particular NH group was evaluated as the real-FT of the corresponding indirect-dimension time-domain signal, which was zero filled to 256 points prior to FT. Narrow center peaks were regularly observed in our experimental $R N-{ }^{1} \mathrm{H}$ spectra as expected from "nonideal" conditions. In the time-domain, these are detected as slowly decaying constant signal contributions, which have the uncomfortable effect of introducing sinc oscillations in the Fourier transform when the evolution time is curtailed in the experiment and zero-filling is applied prior to FT. To avoid having to deal with these artificial line shape distortions, particularly in the context of curve fitting, we chose to suppress the wiggles by subtracting the average of the last point of the time-domain spectrum from the entire spectrum prior to zero-filling. While this subtraction of the tail signal also removes narrow centerpeak components, broad center features do remain, particularly in the $R N-{ }^{15} \mathrm{~N}$ spectra.

Numerical simulations were executed in Fortran-95. The programs were written with the intention of facilitating operations like implementation of average Hamiltonians, simultaneous least-squares curve fitting of more than one spectrum by the simplex method, Monte Carlo analysis, etc. In simulations based on time-dependent Hamiltonians, time increments were kept below $1 \mu \mathrm{~s}$. For summation over crystallite orientations in powder-sample simulations, we used the REPULSION polar-angle distributions. ${ }^{45}$

- THEORY

CSA Notation. When reporting results of amide-proton CSA-tensor determinations, it is useful to do so in a notation system that facilitates comparison between different amide groups. In particular, the nomenclature of the principal axes should be standardized with respect to their orientations in the molecular structure. For this purpose, we will use a tensornotation system, ${ }^{19}$ schematically depicted in Figure 2a, where the Z-axis direction is the one that is roughly parallel to the NH bond and the X axis is approximately normal to the peptide plane. It is based on the general observations mentioned above that the principal axes of the most- and least-shielded tensor components are pointing in those approximate directions. ${ }^{11,18-22,25,26}$ Consequently, we expect the principal CS tensor values to relate to each other as $\delta_{Z Z}<\delta_{Y Y}<\delta_{X X}$.

The goal of the $R N_{n}^{\nu}$ experiments is to determine the three principal components of the CSA tensor and the polar angles (θ, ϕ) of the NH bond with respect to the principal axis system (PAS), as depicted in Figure 2b. Figure 2c illustrates the polar angles β_{CSA} and α_{CSA} of the rotor-axis direction with respect to

Figure 2. (a) Orientation of the CSA principal axes $X Y Z$ in the molecular frame of a hydrogen-bonded amide group. (b) Relative orientations of the NH bond vector and the CSA axes $X Y Z$. (c) Relative orientations of the magnetic field \mathbf{B}_{0}, the rotor axis, and the CSA principal axes $X Y Z$ of a single crystal, depicted at the moment in the rotor cycle at which the rotation angle is zero (see text); χ_{m} is the magic angle.
the PAS. The figure depicts the relative orientations of the tensor Z-axis, the rotor axis, and the magnetic field \mathbf{B}_{0} at the moment when they are coplanar and the angle between \mathbf{B}_{0} and Z equals β_{CSA} plus the magic angle χ_{m}. It is the rotor orientation for which we define the rotation angle to be zero. The CSA parameters used in spin-interaction equations presented below follow the notation $\delta_{\text {iso }}=\left(\delta_{X X}+\delta_{Y Y}+\delta_{Z Z}\right) / 3, \delta=\delta_{Z Z}-\delta_{\text {iso }}$, and $\eta=\left(\delta_{Y Y}-\delta_{X X}\right) / \delta$. Because there are many cases of amide groups in proteins where $\mid \delta_{\mathrm{ZZ}}-\delta_{\mathrm{iso}} l$ is not larger than $\mid \delta_{\mathrm{XX}}-$ $\delta_{\text {iso }} I^{19,20} \eta$ is not necessarily restricted between 0 and 1 . We note that this notation is a modified Haeberlen notation adopted by us for convenient spectral simulations.

Average Hamiltonian. $R 12_{1}^{4}$ is one of the symmetry-based $R N_{n}^{\nu}$ pulse sequences ${ }^{30,41}$ designed for recoupling of CSA and heteronuclear dipolar interactions with suppression of isotropic shift and homonuclear dipolar interactions. ${ }^{13,31}$ Various other sequences, such as $R 18_{2}^{5}$ as $R 18_{1}^{7}$, are suitable as well, and the choice of the sequence depends on the accessible MAS frequencies and rf power limits for each particular probe, as well as the scaling factors for the recoupling and the number of second-order terms that are retained in the Hamiltonian. The spectra can be simulated by stepwise integration of the Liouville-von Neumann equation under the time-dependent Hamiltonian that includes the RF irradiation and the CSA and dipolar interactions. As will be shown below, under the current conditions, these calculations can be greatly simplified by application of average Hamiltonians that predict the stroboscopic signal detection at the end of each $R N_{n}^{\nu}$ cycle. The firstorder average Hamiltonian for a CSA interaction of a single spin I with principal CS tensor components $\delta_{X X}, \delta_{Y Y}$, and $\delta_{Z Z}$ is given by

$$
\begin{align*}
H_{\mathrm{av}}^{\mathrm{CSA}}= & -\lambda \omega_{0} \delta \\
& \times\left[\left\{3 \sin ^{2} \beta_{\mathrm{CSA}}-\eta\left(\cos ^{2} \beta_{\mathrm{CSA}}+1\right) \cos 2 \alpha_{\mathrm{CSA}}\right\}\right. \\
& \times\left(I_{x} \cos 2 \gamma_{\mathrm{CSA}}+I_{y} \sin 2 \gamma_{\mathrm{CSA}}\right) \\
& +2 \eta \cos \beta_{\mathrm{CSA}} \sin 2 \alpha_{\mathrm{CSA}} \\
& \left.\times\left(I_{x} \sin 2 \gamma_{\mathrm{CSA}}-I_{y} \cos 2 \gamma_{\mathrm{CSA}}\right)\right] \tag{1}
\end{align*}
$$

where ω_{0} is the Larmor frequency, $\delta, \eta, \alpha_{\mathrm{CSA}}$, and β_{CSA} are as defined above, and γ_{CSA} is the rotation angle of the CSA tensor
at time $t=0$, whereby the zero rotation angle is defined as that of the crystal orientation where \mathbf{B}_{0}, the rotor axis, and the $\delta_{Z Z}$ axis are coplanar, and the angle between the \mathbf{B}_{0} direction and the $\delta_{Z Z}$ axis is $\beta_{\mathrm{CSA}}+\chi_{m}$, as depicted in Figure 2 b . For the special case of $\eta=0$, the expression in eq 1 is in full agreement with the Hamiltonian originally formulated by Zhao et al. ${ }^{31}$ Not having encountered the η-dependent terms of the average Hamiltonian in the literature, we verified eq 1 by numerical simulations. The prefactor λ differs for different $R N_{n}^{\nu}$ sequences having this symmetry. It is 0.0515 for $R 12_{1}^{4}$ and 0.0507 and 0.0525 for the closely related sequences $R 18_{2}^{5}$ and $R 18_{1}^{7}$, respectively.

The average dipolar Hamiltonian of a heteronuclear I, S spin pair under $R 12_{1}^{4}$ irradiation of spin I is

$$
\begin{equation*}
H_{\mathrm{av}}^{\mathrm{D}}=-6 \lambda b_{\mathrm{IS}} \sin ^{2} \beta_{\mathrm{D}}\left(I_{x} S_{z} \cos 2 \gamma_{\mathrm{D}}+I_{y} S_{z} \sin 2 \gamma_{\mathrm{D}}\right) \tag{2}
\end{equation*}
$$

where λ is the same as in eq $1, b_{\text {IS }} / 2 \pi=D$ is the dipolar coupling constant (DCC), β_{D} is the angle between the internuclear vector and the rotor axis, and γ_{D} is the rotation angle at $t=0$, where in this case the rotation angle is defined to be zero for the rotor orientation at which the angle of the internuclear vector with \mathbf{B}_{0} equals $\beta_{\mathrm{D}}+\chi_{m}$. Equation 2 also agrees with Zhao et al.'s Hamiltonian expression. ${ }^{31}$ In the absence of molecular motions, the dipolar interaction strength is given by

$$
\begin{equation*}
b_{\text {IS }}=-\frac{\mu_{0} \gamma_{\mathrm{T}} \gamma_{S} \hbar}{4 \pi r^{3}} \tag{3}
\end{equation*}
$$

where r is the internuclear distance. We note that if the NH groups were undergoing rapid molecular motions, the dipolar interaction would be reduced, and in most circumstances the tensor would lose its axial symmetry. Terms like those involving η in eq 1 would then have to be included in $H_{\mathrm{av}}^{\mathrm{D}}$. Because in the samples under investigation molecular motions are not extensive, we omitted these terms. For detailed discussions of the information that can be extracted from reduced dipolar interactions, we point the reader to relevant literature. ${ }^{34,46}$
$R N-{ }^{15} \mathrm{~N}$ and $R N-{ }^{1} \mathrm{H}$ spectra detect the time dependence of the coefficients of S_{x} and I_{z} terms in the density matrix operator, respectively. The spectra are γ-encoded; that is, they are independent of the γ angles in eqs 1 and 2 .

In addition, the $R N-{ }_{-}^{1} \mathrm{H}$ spectra are affected by the short-contact-time cross-polarization (CP) to ${ }^{15} \mathrm{~N}$ following the $\mathrm{R} 12_{1}^{4}$ sequence (see Figure 1a). A $90^{\circ}{ }_{y}$ pulse flips the I_{z} term emerging from the R124 evolution to I_{x} coherence, which is then transferred to S_{x} coherence by first-sideband Hartmann-Hahn-matched rf irradiation. Provided the contact time is an integer number of rotor periods, the average CP Hamiltonian is

$$
\begin{equation*}
H_{\mathrm{av}}^{\mathrm{CP}}=\omega_{\mathrm{CP}}\left\{\left(I_{z} S_{z}+I_{y} S_{y}\right) \cos \gamma_{\mathrm{D}}+\left(I_{z} S_{y}-I_{y} S_{z}\right) \sin \gamma_{\mathrm{D}}\right\} \tag{4}
\end{equation*}
$$

with ω_{CP} given by

$$
\begin{equation*}
\omega_{\mathrm{CP}}=\frac{1}{4} \sqrt{2} b_{\mathrm{IS}} \sin 2 \beta_{\mathrm{D}} \tag{5}
\end{equation*}
$$

Here, β_{D} is the angle of the NH bond with the rotor axis, and γ_{D} is the rotation angle at the beginning of the contact period, whereby the zero angle is defined as in the context of eq 2 . If at $t=0$ the expectation value of I_{x} is $\left\langle I_{x}(0)\right\rangle$, then the expectation value $\left\langle S_{x}\right\rangle$ of S_{x} evolves according to

$$
\begin{equation*}
\left\langle S_{x}(t)\right\rangle=\left\langle I_{x}(0)\right\rangle \sin ^{2}\left(\omega_{\mathrm{CP}} t / 2\right) \tag{6}
\end{equation*}
$$

Figure 3. Simulated $R 12_{1}^{4}$ spectra evaluated with $D=10 \mathrm{kHz}$ and indicated principal components $\delta_{X X}-\delta_{\text {iso }}$ and $\delta_{Z Z}-\delta_{\text {iso }}$ of the ${ }^{1} \mathrm{H}$ CSA tensor ($\delta_{Y Y}$ $-\delta_{\text {iso }}$ is not indicated as it is equal to minus the sum of the other two components) and polar angles θ of the NH vector. The azimuthal angle ϕ is constant at 45°. Black: Calculated with average Hamiltonians. Blue: Calculated with full $R 12_{1}^{4}$ Hamiltonian including three nearby protons. Other parameters: ${ }^{1} \mathrm{H}$ Larmor frequency 850 MHz , MAS frequency $14 \mathrm{kHz}, 64 \mathrm{R} 12_{1}^{4}$ time-domain increments of $1 / 14 \mathrm{~ms}$ for $R N-{ }^{1} \mathrm{H}\left({ }^{15} \mathrm{~N}_{\mathrm{und}}\right)$ and $R N-{ }^{15} \mathrm{~N}$ spectra and $2 / 14 \mathrm{~ms}$ for $R N-{ }^{1} \mathrm{H}\left({ }^{15} \mathrm{~N}_{\text {dec }}\right)$ spectra, $2 / 14 \mathrm{~ms}$ CP contact time, and 200 Hz Lorentzian line broadening. Number of crystallite orientations and γ angles are 320 and 4 , respectively.

While the rate of this transfer is the same for any γ_{D} angle, the strong dependence on β_{D} causes a distortion of the spectrum.

Powder spectra are thus dependent on the strength D of the dipolar interaction, the size δ and asymmetry η of the CSA, and the polar angles θ and ϕ of the NH vector with respect to the PAS of the CSA tensor (see Figure 1b). Because of the symmetry properties of $R 12_{1}^{4}$, the spectra are insensitive to $\delta_{\text {iso }}$ of the protons. The calculated spectra are independent of the signs of δ, η, and D. Furthermore, θ can be replaced by $-\theta$ or π $-\theta$ without altering the spectra and so can ϕ be replaced by $-\phi$ or $\pi-\phi$. Hence, relevant values of the polar angles are confined to the range $0-90^{\circ}$. We note that if the dipolar tensor were not axially symmetric, the relevant range of either θ or ϕ would have been $0-180^{\circ}$. Spin relaxation during the $R 12_{1}^{4}$ irradiation is represented in the form of Lorentzian line broadening of the calculated spectra. To account for it, we introduce a Lorentzian line broadening parameter LB for each of the three spectra.

Examples of Spectra. Figure 3 shows a collection of simulated $R 12_{1}^{4}$ spectra for a variety of spin-interaction combinations. They serve as an indication of how strongly the lineshapes depend on those parameters. They are simulated by the two methods discussed above, that is, by applying the average Hamiltonians and by stepwise integration of the Liouville-von Neumann equation under the full time-dependent Hamiltonian. Average-Hamiltonian simulations of decoupled spectra were performed by simply setting $D=0$. The full Hamiltonian included, in addition to the spin operators of the ${ }^{1} \mathrm{H}^{15} \mathrm{~N}$ spin pair, the CSAs and dipolar interactions of
three additional protons located at characteristic positions in the vicinity of the amide group (see the Supporting Information for details). The spectra calculated by the two methods are superposed in the figure, thereby demonstrating that the average Hamiltonian model is reasonable in representing the spin dynamics of the ${ }^{1} \mathrm{H}^{15} \mathrm{~N}$ spin pair. The figure shows that interactions with other protons during the $R 12_{1}^{4}$ irradiation are sufficiently suppressed and that the short-contact-time CP selectively transfers the amide proton spin coherence to the detected ${ }^{15} \mathrm{~N}$. Only the $R N-{ }^{1} \mathrm{H}\left({ }^{15} \mathrm{~N}_{\text {dec }}\right)$ spectra show a rather substantial deviation between average- and full-Hamiltonian spectra. It is not due to the interaction with the neighboring protons because a full-Hamiltonian simulation in the absence of those neighbors (not shown) is nearly identical to the spectrum including the neighbors. The slight shortcoming of the average Hamiltonian to produce a more perfect spectrum is presumably due to the simplistic way it deals with the decoupling. In the Supporting Information, we present Table S2 with CSA and dipolar-interaction parameters determined by simultaneous curve fitting of average-Hamiltonian simulations to the three full-Hamiltonian ${ }^{1} \mathrm{H}_{4}{ }^{15} \mathrm{~N}$ spectra, as well as fitting results of fullHamiltonian ${ }^{1} \mathrm{H}^{15} \mathrm{~N}$ spectra. The table shows that, in general, the errors introduced by application of the average Hamiltonian are not larger than those associated with application of the full ${ }^{1} \mathrm{H}^{15} \mathrm{~N}$ Hamiltonian, nor do they exceed the uncertainties inherent in the analysis of experimental spectra (vide infra). Other simulations have demonstrated that the application of eqs 3 and 4 for evaluating the CP evolution produces spectra that are indistinguishable from those calculated by stepwise
integration according to the ramped CP irradiation applied in our experiments. In a forthcoming publication, we will address the features of single crystallite spectra that underlie the powder spectra, the origins of enhanced zero-frequency peaks encountered in experimental spectra, the effects of RF homogeneity, and other factors that may influence the lineshapes.

RESULTS

Experimental Spectra. In Figure 4, the 2D NCA plane extracted from the $3 \mathrm{D} R 12{ }_{1}{ }^{4}-{ }^{1} \mathrm{H}\left({ }^{15} \mathrm{~N}_{\text {dec }}\right)$ spectrum (Figure 1a)

Figure 4. (a) The 2D NCA plane (at $t_{1}=0$) of the 3D $R 121_{1}-{ }^{1} \mathrm{H}\left({ }^{15} \mathrm{~N}_{\text {dec }}\right)$ spectrum of $\mathrm{U}-{ }^{13} \mathrm{C},{ }^{15} \mathrm{~N}$-CAP-Gly domain of mammalian dynactin. The experiment was conducted at 19.9 T . Acquisition and processing parameters are presented in the Experiments and Materials. (b) Experimental $R N-{ }^{1} \mathrm{H}\left({ }^{15} \mathrm{~N}_{\text {dec }}\right)$ lineshapes extracted from the $3 \mathrm{D} R N-{ }^{1} \mathrm{H}\left({ }^{15} \mathrm{~N}_{\text {dec }}\right)$ spectrum for judiciously chosen CAP-Gly residues: H40 (terminus of β-sheet), Y46 (β-sheet), V47 (β sheet), T50 (loop), T54 (loop), and C81 (loop).
is illustrated together with six representative lineshapes of CAPGly residues H40, Y46, V47, T50, G67, and C81. These residues were judiciously chosen to represent β-sheet (Y46 and V47), termini of β-sheet (H40), and loop (T50, H40, G67, and C81) secondary structure regions of the protein (CAP-Gly contains essentially no α-helices). As anticipated, at 19.9 T , both the resolution and the sensitivity are remarkably high permitting one to extract excellent-quality lineshapes for 42 residues of CAP-Gly from the three sets of 3D spectra.

In Figure 5, the experimental $R N-{ }^{1} H\left({ }^{15} \mathrm{~N}_{\text {und }}\right), R N-{ }^{1} \mathrm{H}$ $\left({ }^{15} \mathrm{~N}_{\text {dec }}\right)$, and $R N-{ }^{15} \mathrm{~N}$ lineshapes are depicted for the representative CAP-Gly residues spanning the various regions

Figure 5. Experimental (black) and best-fit simulated with full Hamiltonian (blue) $R 12_{1}^{4}$-symmetry based $R N-{ }^{1} \mathrm{H}\left({ }^{15} \mathrm{~N}_{\text {und }}\right), R N-{ }^{1} \mathrm{H}-$ $\left({ }^{15} \mathrm{~N}_{\text {dec }}\right)$, and $R N-{ }^{15} \mathrm{~N}$ lineshapes of select residues of $\mathrm{U}-{ }^{12} \mathrm{C},{ }^{15} \mathrm{~N}$-CAPGly domain of mammalian dynactin.
of the primary sequence and secondary structure, together with the best-fit calculated full-Hamiltonian spectra. The best-fit parameters and their uncertainty ranges are listed in Table 1. To extract the individual elements of the ${ }^{1} \mathrm{H}$ CSA tensors and the ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ dipolar coupling constant (DCC) as well as the polar angles defining the relative orientation of the NH bond and the CSA tensor of the amide proton, we have performed simultaneous fitting of each set of three $R 12_{1}^{4}$ spectra. Also listed are the isotropic ${ }^{1} \mathrm{H}$ chemical shifts of $\mathrm{U}-{ }^{13} \mathrm{C},{ }^{15} \mathrm{~N}$-CAPGly that were extracted from solution ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HSQC spectra and reported by us previously. ${ }^{38}$ Although we do not have evidence that the isotropic shifts in the liquid and solid state are identical, we utilized the solution shifts to evaluate the actual values of the principal components of the CSA tensors, $\delta_{i j}$, from the $\delta_{i i}-\delta_{\text {iso }}$ data resulting from our $R 12_{1}^{4}$ analysis, and it is these actual CSA components that are listed in Table 1. We next turn our attention to the curve-fitting procedures permitting optimized accuracy of the values of the experimental observables to be derived.

Curve Fitting and Accuracy of ${ }^{1} \mathrm{H}$ CSA Parameters. The parameters to be adjusted by curve fitting of theoretical $R 12_{1}^{4}$ lineshapes to experimental spectra are the five quantities

Table 1. Spin-Interaction Parameters and Their Uncertainty Limits Obtained by Triple Curve-Fitting of Average-Hamiltonian Spectra to the Experimental $R 121_{1}^{4}$ Spectra of Amide Protons of $\mathrm{U}-{ }^{13} \mathrm{C},{ }^{15} \mathrm{~N}$ CAP-Gly

residue ($2{ }^{\circ}$ structure)	$\mathrm{N} \cdots \mathrm{O}(\AA)$	$\mathrm{H} \cdots \mathrm{O}(\AA)$	$\delta_{\text {iso }}(\mathrm{ppm})$	$\delta_{X X}(\mathrm{ppm})$	$\delta_{Y Y}(\mathrm{ppm})$	$\delta_{\text {ZZ }}(\mathrm{ppm})$	span (ppm)	DCC (kHz)	θ (deg)
V29 (loop)	N/A	N/A	8.58	16.5 ± 1.3	8.1 ± 1.3	1.2 ± 1.4	15.3 ± 1.3	9.7 ± 0.4	7 ± 9
G30 (loop)	2.94	2.05	8.93	15.5 ± 0.9	10.3 ± 1.0	-0.1 ± 0.6	15.6 ± 1.1	9.4 ± 0.2	11 ± 4
R32 (sheet)	N/A	N/A	8.92	16.3 ± 1.3	9.0 ± 1.2	1.5 ± 0.3	14.8 ± 1.4	9.5 ± 0.2	8 ± 3
V35 (sheet)	3.01	2.19	8.66	17.0 ± 1.2	8.6 ± 1.2	0.4 ± 1.3	16.5 ± 1.2	10.0 ± 0.4	14 ± 9
I36 (loop)	3.09	2.22	8.3	12.6 ± 2.0	10.9 ± 2.0	1.4 ± 2.1	11.1 ± 1.9	9.7 ± 0.7	19 ± 13
G39 (loop)	N/A	N/A	8.2	12.1 ± 3.5	10.9 ± 3.3	1.7 ± 3.5	10.4 ± 3.0	9.0 ± 1.1	12 ± 21
H40 (sheet)	N/A	N/A	6.22	10.9 ± 1.0	3.7 ± 2.0	4.0 ± 1.3	6.9 ± 1.2	8.9 ± 0.5	2 ± 32
R41 (sheet)	N/A	N/A	8.86	15.9 ± 0.8	9.3 ± 0.9	1.4 ± 0.9	14.6 ± 0.9	9.6 ± 0.3	0 ± 7
G42 (sheet)	3.07	2.18	8.91	17.5 ± 0.2	7.8 ± 0.3	1.4 ± 0.3	16.1 ± 0.4	10.3 ± 0.1	9 ± 4
T43 (sheet)	2.91	2.01	8.48	15.7 ± 0.5	9.0 ± 0.6	0.7 ± 0.6	15.0 ± 0.6	10.4 ± 0.2	13 ± 5
V44 (sheet)	3.21	2.28	9.32	17.5 ± 0.2	8.8 ± 0.2	1.7 ± 0.3	15.8 ± 0.5	10.3 ± 0.1	9 ± 4
Y46 (sheet)	3.27	2.31	7.63	13.3 ± 0.3	7.3 ± 0.4	2.3 ± 0.4	11.0 ± 0.5	10.0 ± 0.1	26 ± 4
V47 (sheet)	N/A	N/A	8.15	14.8 ± 0.2	9.3 ± 0.3	0.3 ± 0.3	14.4 ± 0.4	10.3 ± 0.1	9 ± 4
T50 (loop)	N/A	N/A	10.13	18.3 ± 1.1	12.5 ± 1.1	-0.4 ± 1.1	18.7 ± 1.1	9.9 ± 0.4	8 ± 8
L51 (loop)	N/A	N/A	7.74	14.7 ± 2.1	8.2 ± 2.5	0.4 ± 0.8	14.3 ± 1.9	10.8 ± 0.6	0 ± 14
F52 (loop)	N/A	N/A	6.46	11.8 ± 1.6	2.9 ± 1.6	4.7 ± 1.8	7.1 ± 3.1	10.1 ± 0.5	1 ± 46
T54 (loop)	N/A	N/A	8.42	15.0 ± 1.0	9.3 ± 1.0	1.0 ± 1.0	14.0 ± 1.0	9.2 ± 0.3	16 ± 8
G55 (loop)	N/A	N/A	8.81	15.6 ± 1.1	11.0 ± 1.1	-0.1 ± 1.2	15.7 ± 1.1	9.5 ± 0.4	11 ± 8
K56 (sheet)	N/A	N/A	8.51	14.3 ± 0.9	11.0 ± 1.0	0.2 ± 1.0	14.1 ± 1.0	9.3 ± 0.3	11 ± 8
V58 (sheet)	3.03	2.20	9.49	17.2 ± 0.2	9.7 ± 0.2	1.5 ± 0.2	15.7 ± 0.4	10.4 ± 0.1	11 ± 4
G59 (sheet)	2.62	1.70	10.02	18.4 ± 0.6	12.1 ± 0.7	-0.5 ± 0.4	18.9 ± 0.8	9.9 ± 0.3	10 ± 3
V60 (sheet)	3.08	2.12	9.07	16.8 ± 0.0	9.0 ± 0.2	1.4 ± 0.1	15.4 ± 0.3	10.2 ± 0.1	12 ± 3
I61 (sheet)	2.79	1.82	8.63	16.4 ± 0.2	8.6 ± 0.4	0.9 ± 0.3	15.4 ± 0.4	10.2 ± 0.1	12 ± 4
D63 (loop)	3.05	2.11	9.00	14.0 ± 0.6	10.5 ± 0.6	2.5 ± 0.6	11.4 ± 0.7	10.2 ± 0.2	17 ± 6
A65 (loop)	N/A	N/A	8.48	15.5 ± 0.2	9.5 ± 0.5	0.4 ± 0.4	15.1 ± 0.4	9.8 ± 0.1	11 ± 4
G67 (loop)	3.89	N/A	8.56	16.2 ± 0.8	7.2 ± 0.9	2.2 ± 0.9	14.1 ± 0.9	10.2 ± 0.3	12 ± 7
G67 (loop)	3.89	N/A	8.56	13.5 ± 0.8	11.4 ± 0.9	0.8 ± 0.9	12.7 ± 0.9	9.7 ± 0.3	29 ± 7
K68 (loop)	N/A	N/A	8.31	14.1 ± 0.9	9.4 ± 1.0	1.4 ± 1.0	12.7 ± 1.0	9.6 ± 0.3	16 ± 8
N69 (loop)	N/A	N/A	8.46	15.4 ± 0.2	8.3 ± 0.3	1.8 ± 0.3	13.6 ± 0.4	9.9 ± 0.1	9 ± 4
D70 (loop)	N/A	N/A	8.14	14.3 ± 0.4	8.2 ± 1.1	2.0 ± 0.8	12.2 ± 0.6	10.0 ± 0.2	26 ± 7
G71 (loop)	3.80	N/A	8.75	14.6 ± 2.0	10.8 ± 1.9	0.8 ± 2.0	13.8 ± 1.8	10.3 ± 0.6	18 ± 13
V73 (loop)	2.98	2.03	8.45	15.0 ± 0.2	7.8 ± 0.3	2.6 ± 0.4	12.5 ± 0.5	10.1 ± 0.1	7 ± 11
G75 (loop)	N/A	N/A	8.57	15.5 ± 1.7	10.3 ± 1.7	-0.1 ± 1.8	15.6 ± 1.6	9.9 ± 0.6	15 ± 11
F79 (loop)	N/A	N/A	7.95	14.8 ± 0.6	6.2 ± 0.6	2.9 ± 0.6	11.9 ± 0.7	9.9 ± 0.2	12 ± 6
T80 (loop)	N/A	N/A	8.65	15.0 ± 0.8	9.8 ± 0.9	1.1 ± 0.9	13.9 ± 0.9	9.9 ± 0.3	11 ± 7
C81 (loop)	3.40	2.43	7.92	13.3 ± 0.1	7.3 ± 0.3	3.2 ± 0.3	10.1 ± 0.4	10.0 ± 0.1	3 ± 7
D82 (loop)	N/A	N/A	8.23	15.2 ± 0.3	8.5 ± 0.3	0.8 ± 0.4	14.4 ± 0.4	9.8 ± 0.1	12 ± 4
H85 (loop)	3.21	2.48	8.18	14.4 ± 0.4	7.1 ± 0.5	3.0 ± 0.4	11.3 ± 0.5	10.5 ± 0.2	1 ± 5
F88 (sheet)	N/A	N/A	8.90	16.2 ± 1.3	9.3 ± 1.6	1.2 ± 0.5	15.0 ± 0.9	9.7 ± 0.3	11 ± 7
V89 (sheet)	3.08	2.18	9.59	17.2 ± 0.3	10.5 ± 0.5	1.1 ± 0.4	16.0 ± 0.5	10.4 ± 0.2	11 ± 5
Q91 (loop)	N/A	N/A	9.39	17.7 ± 0.7	11.0 ± 0.8	-0.5 ± 0.8	18.3 ± 0.9	10.1 ± 0.3	8 ± 7
S92 (loop)	N/A	N/A	7.63	13.3 ± 1.3	6.4 ± 1.4	3.2 ± 1.4	10.1 ± 1.3	9.8 ± 0.5	0 ± 10
Q93 (loop)	3.13	N/A	7.87	13.6 ± 1.5	9.7 ± 1.5	0.3 ± 1.6	13.4 ± 1.5	9.7 ± 0.5	16 ± 11

δ, η, D, θ, and ϕ defining the spin interactions and, in addition, the individual line-broadening parameters for each of the spectra. For the broadening, we assumed a Lorentzian profile. When simultaneous fittings were performed on any combination of two of the $R N-{ }^{1} \mathrm{H}$ and $R N-{ }^{15} \mathrm{~N}$ spectra, the resulting parameters were consistently less accurate than the results of simultaneous triple fittings.

The least-squares simplex method was applied for finding the parameters that minimize χ^{2}, which is the sum of squares of the differences between the data points in the experimental and calculated spectra. The χ^{2} evaluation was done after optimization of baseline correction and vertical scaling of the simulated spectra. As a rule, the χ^{2} evaluations excluded the central regions bounded by $\pm 0.5 \mathrm{kHz}$ in $R N-{ }^{1} \mathrm{H}\left({ }^{15} \mathrm{~N}_{\text {und }}\right)$ spectra, ± 0.5 or $\pm 0.3 \mathrm{kHz}$ in $R N-{ }^{1} \mathrm{H}\left({ }^{15} \mathrm{~N}_{\text {dec }}\right)$ spectra, and ± 0.5
kHz in $\mathrm{RN}^{-15} \mathrm{~N}$ spectra. Becauase the exclusion of the central region is practically impossible to define in the originating timedomain signal, it was necessary for the fits to be performed on the Fourier transformed spectra. In the fitting procedure, no limits were placed on the data range of η. The $\delta_{i i}$ components evaluated from the best-fit δ and η were assigned to the X, Y, and Z axes following our convention described above.

Uncertainty limits of the least-squares parameters were estimated by Monte Carlo method. We found a strong correlation between the uncertainty ranges and the heights of the cross peaks shown in the 2D NCA plane. When doing the fits, one also has to be aware of possible local χ^{2} minima. An example of persisting ambiguity is G67 for which we listed two possible sets of parameters. Noticeable is the wide diversity of sometimes very large uncertainties of the polar angle θ.

Although it appears from comparison between the lineshapes in Figure 3 that there is strong dependence on θ, the uncertainties can still be extensive due to a strong covariance between the polar angles and the CSA principal components. One particular example is H40, which is nearly axially symmetric about X and for which ϕ comes out to be close to 90°. It means that with the NH direction parallel to the $Y Z$ plane the angle θ is undetermined. Furthermore, as a consequence of small θ angles, the azimuthal angle ϕ is ill-defined in almost all other cases. Therefore, its value is not listed in Table 1. The table also lists the CSA span, which is the difference $\delta_{X X}-\delta_{Z Z}$. The reason for its inclusion is that its uncertainty is smaller than what one would derive from the uncertainties of $\delta_{X X}$ and $\delta_{Z Z}$. Because the analysis procedure involves the performance of multiple simplex runs, we executed the initial stages of the fitting process by average-Hamiltonian simulations, which are quick on the computer, and completed the final steps by application of the full Hamiltonian.

One important example of the need for simultaneous fitting of all three $R N$ spectra is the evaluation of the DCC. Although it is to be expected that the $R N-{ }^{15} \mathrm{~N}$ spectrum is almost exclusively determined by the DCC value, the ${ }^{1} \mathrm{H}$ CSA interaction does have a noticeable effect on the line shape, especially at high magnetic fields. (This effect was assumed to be negligible in the prior literature, where most of the measurements were performed a lower magnetic field strength of $14.1 \mathrm{~T} .{ }^{34,47}$) Therefore, preknowledge of the actual values of δ and η is essential for evaluating the DCC if one wishes to perform single curve fitting of the $R N_{-}{ }^{15} \mathrm{~N}$ spectrum. For instance, a single fit of the $R N-{ }^{15} \mathrm{~N}$ spectrum of residue G30 gives a DCC value ranging from 9.51 to 10.08 kHz when δ is kept at fixed values between 6.67 and -9.01 ppm , respectively. For comparison, the triple fit of the $R N-{ }^{1} \mathrm{H}\left({ }^{15} \mathrm{~N}_{\text {und }}\right), R N-{ }^{1} \mathrm{H}-$ $\left({ }^{15} \mathrm{~N}_{\text {dec }}\right)$, and $R \mathrm{~N}^{-15} \mathrm{~N}$ spectra yields the DCC value of 9.4 kHz . We find similar differences between the single and triple fit DCC values for other CAP-Gly residues, the magnitude of which depends on the actual values of δ and η.

- DISCUSSION

Residue-Specific ${ }^{1} \mathrm{H}$ CSA Tensors of CAP-Gly Domain of Dynactin: Comparison with Earlier Solution NMR Studies. To assess the practical value of the CSA parameters of amide protons measured by our method, it is of interest to compare our experimental results with the generally consistent picture of the earlier CS-tensor studies of protons in peptide bonds. One commonly encountered property of the CSA components is their close adherence to a universal linear relationship with each other and with the isotropic shift. ${ }^{17,19,20}$ To check how well our data agree with this behavior, we examined the relation of the CSA components of the CAP-Gly residues to their ${ }^{1} \mathrm{H}$ isotropic chemical shift and compared that relationship with its counterparts determined by two of the most advanced measurements of proton CSA in protein amide groups. In Figure 6, we plot the three components versus $\delta_{\text {iso }}$ of 42 CAP-Gly residues together with the straight lines that were fitted through the data points in the similar plot of ubiquitin results by Loth et al. ${ }^{19}$ and GB3 results by Yao et al. ${ }^{20}$ The figure shows that the amide CSAs of our study closely follow the linear-relation trend of those earlier studies. The three best fit lines through our experimental data are: $\delta_{X X}=2.0 \delta_{\text {iso }}-1.7$ $\mathrm{ppm} ; \delta_{Y Y}=2.0 \delta_{\text {iso }}-8.3 \mathrm{ppm}$; and $\delta_{Z Z}=-1.04 \delta_{\text {iso }}+10.2 \mathrm{ppm}$. As in those earlier studies, strong correlation was observed for $\delta_{X X}$ and $\delta_{Y Y}$ (with the Pearson coefficients R_{P} and statistical

Figure 6. Principal components of ${ }^{1} \mathrm{H}$ CSA tensors observed for 42 residues of $\mathrm{U}-{ }^{13} \mathrm{C},{ }^{15} \mathrm{~N}$-CAP-Gly domain of mammalian dynactin, plotted as a function of the isotropic ${ }^{1} \mathrm{H}$ chemical shifts: $\delta_{X X}(\bigcirc), \delta_{Y Y}$ (\mathbf{A}), and $\delta_{Z Z}(\boldsymbol{)}$. The straight lines represent the linear regression through similar CS plots of ubiquitin by Loth et al. ${ }^{19}$ (red: $\delta_{X X}=2.4 \delta_{\text {iso }}$ $\left.-5.2 \mathrm{ppm} ; \delta_{Y Y}=0.6 \delta_{\text {iso }}+3.1 \mathrm{ppm} ; \delta_{Z Z}=2.1 \mathrm{ppm}\right)$ and of GB3 by Yao et al. ${ }^{20}$ (black: $\delta_{X X}=1.79 \delta_{\text {iso }}-0.38 \mathrm{ppm} ; \delta_{Y Y}=1.22 \delta_{\text {iso }}-2.28$ $\left.\mathrm{ppm} ; \delta_{\mathrm{ZZ}}=-0.17 \delta_{\text {iso }}+4.03 \mathrm{ppm}\right)$. The three best fit lines through our experimental data are (not shown): $\delta_{X X}=2.0 \delta_{\text {iso }}-1.7 \mathrm{ppm}\left(R_{P}=\right.$ $\left.0.85, p=4.3 \times 10^{-13}\right) ; \delta_{Y Y}=2.0 \delta_{\text {iso }}-8.3 \mathrm{ppm}\left(R_{\mathrm{P}}=0.78, p=7.5 \times\right.$ $\left.10^{-10}\right) ; \delta_{Z Z}=-1.04 \delta_{\text {iso }}+10.2 \mathrm{ppm}\left(R_{P}=-0.65, p=2.3 \times 10^{-6}\right)$.
significance p being $0.85 / 4.3 \times 10^{-13}$ and $0.78 / 7.5 \times 10^{-10}$ for $\delta_{X X}$ and $\delta_{Y Y}$, respectively), while for $\delta_{Z Z}$, the correlation with the isotropic chemical shift is somewhat weaker ($R_{\mathrm{P}}=-0.65$ and p $=2.3 \times 10^{-6}$).

The numerical results of the peptide samples also comply with two other general properties of the amide proton CSA tensor, one being that, except for the residues with the smallest isotropic shift, $\delta_{Y Y}$ does not differ much from the average of $\delta_{X X}$ and $\delta_{Z Z}(\eta \approx 1)$ and the other that the angle θ is very often smaller than 15° and never larger than 35° (see Table 1). Unfortunately, we cannot verify compliance with the general observation that the tensor X axis is perpendicular to the peptide plane, because no interactions with backbone atoms other than the DCC with ${ }^{15} \mathrm{~N}$ are revealed by our method.

On the basis of these satisfying comparisons, we conclude that $R 12_{1}^{4}$ spectra are a promising route for providing proton CSA parameters that are useful for the further development of the study of amide hydrogen bonds in peptides and proteins.

Residue-Specific ${ }^{1} \mathrm{H}$ CSA Parameters of CAP-Gly: Relationships with Hydrogen-Bonding Length. Another test of the practical validity of our results is an examination of the relation of the principal CS tensor components with the hydrogen-bond length, which has repeatedly been shown in the literature to be a strong correlation. For this purpose, we use the $\mathrm{NH} \cdots \mathrm{O}$ and $\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding distances listed in Table 1 that were generated from the CAP-Gly structure solved by us using MAS NMR spectroscopy (PDB code 2 m 02), which will be reported in a forthcoming publication. The CAP-Gly samples for structure determination were prepared under conditions identical to those used for sample preparation in this work.

In Figure 7, we plot the principal components of the ${ }^{1} \mathrm{H}$ CSA tensor, $\delta_{X X}, \delta_{Y Y}$, and $\delta_{Z Z}$, and the span, $\delta_{X X}-\delta_{Z Z}$, for a subset of residues forming hydrogen bonds, as the function of the $\mathrm{NH} \cdots \mathrm{O}$ and $\mathrm{H} \cdots \mathrm{O}$ hydrogen-bond distances. As discussed previously by Tjandra and Bax, due to the electrostatic nature of the hydrogen bond, the electric field at the nucleus of the

Figure 7. Correlation between principal components of ${ }^{1} \mathrm{H}$ CSA tensors and hydrogen-bond length in $\mathrm{U}-{ }^{13} \mathrm{C},{ }^{15} \mathrm{~N}$-CAP-Gly domain of mammalian dynactin. (A) and (B) show the correlation between the span, $\delta_{X X}-\delta_{Z Z}$ (black), and the $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N} \cdots \mathrm{O}$ distances, respectively. In (C) and (D), correlations of the principal components $\delta_{X X}$ (red), $\delta_{Y Y}$ (gray), and $\delta_{Z Z}$ (blue) are shown with the $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N} \cdots \mathrm{O}$ distances, respectively. The $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N} \cdots \mathrm{O}$ distances are extracted from the MAS NMR structure of CAP-Gly (PDB code 2 m 02). The dashed lines in (A)-(D) correspond to eq 7 . In (A), $B=10.9 \mathrm{ppm}, C=3.9 \mathrm{ppm} \AA^{2}$, and $D=1.0 \AA^{2}$. The Pearson correlation coefficient $R=0.63$, and the statistical significance $p=0.007$. In (B), $B=11.5 \mathrm{ppm}, C=2.6 \mathrm{ppm} \AA^{2}$, and $D=2.0 \AA^{2}$. The Pearson correlation coefficient $R=0.61$, and the statistical significance $p=0.0046$. The dotted lines in (C) and (D) represent the fits of the principal components of the CSA tensors to eq 7 with the fixed values of coefficient $D\left(1.0\right.$ and $2.0 \AA^{2}$ for $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N} \cdots \mathrm{O}$ distances, respectively). In (C), the Pearson coefficient R and the statistical significance p are $0.48 / 0.05$, $0.60 / 0.01$, and $-0.69 /$ 0.002 for $\delta_{X X}, \delta_{Y Y}$, and $\delta_{Z Z}$, respectively. In (D), the corresponding parameters are $0.48 / 0.03,0.51 / 0.02$, and $-0.60 / 0.005$.
amide hydrogen participating in the hydrogen bond decreases as the square of the distance between the proton and the position of the negative charge on the oxygen atom, and hence the span of the ${ }^{1} \mathrm{H}$ CSA tensor is expected to roughly obey the following equation: ${ }^{17}$

$$
\begin{equation*}
\delta_{X X}-\delta_{Y Y}=B+\frac{C}{\left(r_{\mathrm{H} \cdots \mathrm{O}}-D\right)^{2}} \tag{7}
\end{equation*}
$$

The best fit is obtained when $B=10.9 \mathrm{ppm}, C=3.9 \mathrm{ppm} \AA^{2}$, and $D=1.0 \AA$. The plot of the span versus $\left(1 /\left(r_{\mathrm{H} \ldots \mathrm{O}}-1.0\right)^{2}\right)$ is shown in Figure 7A, and the statistical analysis of the data reveals statistically significant correlation with $R_{\mathrm{P}}=0.63$ and $p=$ 0.007 . In Figure 7 C , we plotted $\delta_{X X}, \delta_{Y Y}$, and $\delta_{Z Z}$, versus the $\mathrm{H} \cdots \mathrm{O}$ hydrogen-bond distance. The dashed lines represent their fits to eq 7 , where the coefficient D was fixed at $1.0 \AA$, determined from the fit of the span (see above). These fits again reveal statistically significant correlations for the individual principal components of the CSA tensors, with the Pearson coefficient R_{P} and the statistical significance p being $0.48 / 0.05,0.60 / 0.01$, and $-0.69 / 0.002$ for $\delta_{X X}, \delta_{Y Y}$, and $\delta_{Z Z}$, respectively.

Because $\mathrm{H} \cdots \mathrm{O}$ distances may have large associated uncertainties as the MAS NMR structure of CAP-Gly was determined on the basis of $\mathrm{C}-\mathrm{C}$ distances, and proton positions were inferred computationally, we decided to also examine the relationship between the ${ }^{1} \mathrm{H}$ CSA tensors and the $\mathrm{NH} \cdots \mathrm{O}$ hydrogen-bond distances. The corresponding results are shown in Figure 7B and D. The best fit of the span, $\delta_{X X}-\delta_{Z Z}$, to eq 7 is obtained when $B=11.5 \mathrm{ppm}, C=2.6 \mathrm{ppm}$ \AA^{2}, and $D=2.0 \AA$. The plot of the span versus $\left(1 /\left(r_{\mathrm{H}} \ldots \mathrm{O}-\right.\right.$ 2.0) ${ }^{2}$) is presented in Figure 7B, and the statistical analysis of the data yields the Pearson correlation coefficient $R_{\mathrm{P}}=0.61$, and the statistical significance $p=0.0046$. Similarly, the fits of
the individual principal components of the CSA tensor shown as dashed lines in Figure 7D to eq 7 where D is fixed to $2.0 \AA$ show statistically significant correlations with Pearson coefficient R_{P} and the statistical significance p being $0.48 / 0.03$, $0.51 / 0.02$, and $-0.60 / 0.005$ for $\delta_{X X}, \delta_{Y Y}$, and $\delta_{Z Z}$, respectively.

Considerable scatter is present in all of the above data, as may be expected on the basis of the conclusions of ab initio calculations that hydrogen-bond distance is likely not the sole determinant of the ${ }^{1} \mathrm{H}$ CSA tensor. ${ }^{11,20,25,26}$ To gain deeper understanding on the relationship of the ${ }^{1} \mathrm{H}$ CSA to hydrogenbond parameters, much more experimental information is needed that will include a broad range of proteins and in particular a detailed survey of the CSA of various secondary structure types.

As discussed above, this study also underscores the importance of recording a set of three spectra, $R N-{ }_{-}^{1} \mathrm{H}\left({ }^{15} \mathrm{~N}_{\mathrm{und}}\right)$, $R N-{ }^{1} \mathrm{H}\left({ }^{15} \mathrm{~N}_{\mathrm{dec}}\right)$, and $R \mathrm{~N}^{15} \mathrm{~N}$, and performing their simultaneous triple fit, to obtain accurate values not only for the ${ }^{1} \mathrm{H}$ CSA but also for the ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ dipolar parameters.

Future Outlook. The results presented in this work speak to the excellent potential of the $R N$-based experiments for obtaining accurate and precise ${ }^{1} \mathrm{H}$ CSA tensors in a variety of systems. While work presented in this Article was performed on a fully protonated protein sample, these experiments are expected to work well on perdeuterated samples; however, reduced sensitivity may be an issue, and longer experiment times may be needed for extracting accurate ${ }^{1} \mathrm{H}$ CSA parameters. We point out that our approach is not limited to the measurement of amide proton CSA. It can be applied to recording ${ }^{1} \mathrm{H}$ CSA in any system as long as there is a heteronucleus $\left({ }^{13} \mathrm{C},{ }^{31} \mathrm{P},{ }^{15} \mathrm{~N}\right.$, etc.) nearby permitting crosspolarization or scalar-based transfer from the proton of interest. Finally, the measurements are not limited to the $R 12_{1}^{4}$ sequence employed in this study, and many other $R N$ sequences with
symmetries appropriate for recoupling chemical shift anisotropy will be applicable (see Table S3 with several examples), as we have shown in our recent work on recoupling heteronuclear CSA interactions. ${ }^{48}$

- CONCLUSIONS

We have demonstrated that proton CSA tensors can reliably be measured in 3D experiments, where in the indirect dimension $R 12_{1}^{4}$, or any other suitable symmetry-based recoupling, allows ${ }^{1} \mathrm{H}$ CSA and ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ dipolar interactions to be represented in three combinations of relative magnitudes and where in the direct dimension ${ }^{15} \mathrm{~N}$ or ${ }^{13} \mathrm{C}$ chemical shifts allow for siteselective detection. Simultaneous fitting of the three experimental spectra permits extracting accurate ${ }^{1} \mathrm{H}$ CSA tensor parameters as well as the ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ dipolar coupling constant together with the angles defining the relative orientations of the CSA tensor and the NH bond vector. Our results indicate that reliable estimates of the CSA and dipolar tensor parameters can be obtained under the average Hamiltonian model, and application of computationally expensive full-Hamiltonian calculations does not yield any noticeable improvements in the quality of the fits. As demonstrated in the CAP-Gly domain of dynactin, our approach permits measurements of proton CSA tensors in systems with multiple proton sites and is therefore anticipated to be particularly well suited for experiments on proteins, protein assemblies, and other macromolecular systems.

- ASSOCIATED CONTENT

(s) Supporting Information

Discussion on multiproton spectra. Tables with (1) atomic coordinates and $\mathrm{N} \cdots \mathrm{H}$ distances of a peptide model used for the simulation of the multinuclear $R 12_{1}^{4}$ spectra shown in Figures 4 and S4(b); (2) spin-interaction parameters used for the simulation of the four-proton spectra shown in Figure 3 and the parameters obtained by triple curve fitting using full Hamiltonian ${ }^{1} \mathrm{H}^{15} \mathrm{~N}$ Hamiltonian or average Hamiltonian; and (3) summary of the first- and second-order terms present in the Hamiltonians for several $R N$-symmetry sequences suitable for recoupling of ${ }^{1} \mathrm{H}$ chemical shift anisotropy. Figures with experimental and simulated $R 12_{1}^{4}$-symmetry-based $R N-{ }^{1} \mathrm{H}$ $\left({ }^{15} \mathrm{~N}_{\text {und }}\right), R N-{ }^{1} \mathrm{H}\left({ }^{15} \mathrm{~N}_{\text {dec }}\right)$, and $R N-{ }^{15} \mathrm{~N}$ lineshapes of all residues yielding resolved signals of $\mathrm{U}-{ }^{13} \mathrm{C},{ }^{15} \mathrm{~N}$-CAP-Gly domain of mammalian dynactin. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

lexvega@comcast.net; tpolenov@udel.edu

Author Contributions

${ }^{\S}$ These authors contributed equally.

Notes

The authors declare no competing financial interest.

- ACKNOWLEDGMENTS

This work was supported by the National Institutes of Health (NIH Grants R01GM085306, P50GM082251, and P30GM103519 from NIGMS, and P30RR031160 from NCRR). We acknowledge the support of the National Science Foundation (NSF Grant CHE0959496) for the acquisition of the 850 MHz NMR spectrometer at the University of Delaware.

REFERENCES

(1) Grant, D. M. In Encyclopedia of Magnetic Resonance; Harris, K. D. M., Wasylishen, R., Eds.; Wiley: Chichester, 1996.
(2) McDermott, A.; Ridenour, C. F. In Encyclopedia of Magnetic Resonance; Grant, D. M., Ed.; Wiley: Chichester, 1996.
(3) Konrat, R.; Tollinger, M.; Kontaxis, G.; Krautler, B. Monatsh. Chem. 1999, 130, 961-982.
(4) Saito, H.; Ando, I.; Ramamoorthy, A. Prog. Nucl. Magn. Reson. Spectrosc. 2010, 57, 181-228.
(5) Berglund, B.; Vaughan, R. W. J. Chem. Phys. 1980, 73, 20372043.
(6) Eckert, H.; Yesinowski, J. P.; Silver, L. A.; Stolper, E. M. J. Phys. Chem. 1988, 92, 2055-2064.
(7) Yesinowski, J. P.; Eckert, H.; Rossman, G. R. J. Am. Chem. Soc. 1988, 110, 1367-1375.
(8) Harris, R. K.; Jackson, P.; Merwin, L. H.; Say, B. J.; Hagele, G. J. Chem. Soc., Faraday Trans. 1988, 84, 3649-3672.
(9) Wu, G.; Freure, C. J.; Verdurand, E. J. Am. Chem. Soc. 1998, 120, 13187-13193.
(10) Marassi, F. M.; Ma, C.; Gesell, J. J.; Opella, S. J. Appl. Magn. Reson. 1999, 17, 433-447.
(11) Sharma, Y.; Kwon, O. Y.; Brooks, B.; Tjandra, N. J. Am. Chem. Soc. 2002, 124, 327-335.
(12) Aliev, A. E.; Harris, K. D. M. Struct. Bonding (Berlin) 2004, 108, 1-53.
(13) Brouwer, D. H.; Ripmeester, J. A. J. Magn. Reson. 2007, 185, 173-178.
(14) Gu, Z. T.; McDermott, A. J. Am. Chem. Soc. 1993, 115, 42824285.
(15) Gu, Z. T.; Ridenour, C. F.; Bronnimann, C. E.; Iwashita, T.; McDermott, A. J. Am. Chem. Soc. 1996, 118, 822-829.
(16) Tessari, M.; Mulder, F. A. A.; Boelens, R.; Vuister, G. W. J. Magn. Reson. 1997, 127, 128-133.
(17) Tjandra, N.; Bax, A. J. Am. Chem. Soc. 1997, 119, 8076-8082.
(18) Cornilescu, G.; Bax, A. J. Am. Chem. Soc. 2000, 122, 1014310154.
(19) Loth, K.; Pelupessy, P.; Bodenhausen, G. J. Am. Chem. Soc. 2005, 127, 6062-6068.
(20) Yao, L. S.; Grishaev, A.; Cornilescu, G.; Bax, A. J. Am. Chem. Soc. 2010, 132, 10866-10875.
(21) Gerald, R.; Bernhard, T.; Haeberlen, U.; Rendell, J.; Opella, S. J. Am. Chem. Soc. 1993, 115, 777-782.
(22) Wu, C. H.; Ramamoorthy, A.; Gierasch, L. M.; Opella, S. J. J. Am. Chem. Soc. 1995, 117, 6148-6149.
(23) Sitkoff, D.; Case, D. A. J. Am. Chem. Soc. 1997, 119, 1226212273.
(24) Tang, S. S.; Case, D. A. J. Biomol. NMR 2011, 51, 303-312.
(25) Parker, L. L.; Houk, A. R.; Jensen, J. H. J. Am. Chem. Soc. 2006, 128, 9863-9872.
(26) Suzuki, Y.; Takahashi, R.; Shimizu, T.; Tansho, M.; Yamauchi, K.; Williamson, M. P.; Asakura, T. J. Phys. Chem. B 2009, 113, 97569761.
(27) Reimer, J. A.; Vaughan, R. W. J. Magn. Reson. 1980, 41, 483491.
(28) Tessari, M.; Vis, H.; Boelens, R.; Kaptein, R.; Vuister, G. W. J. Am. Chem. Soc. 1997, 119, 8985-8990.
(29) Duma, L.; Abergel, D.; Tekely, P.; Bodenhausen, G. Chem. Соттии. 2008, 2361-2363.
(30) Levitt, M. H. In Encyclopedia in Nuclear Magnetic Resonance; Grant, D. M., Harris, R. K., Eds.; Wiley: Chichester, 2002; Vol. 9, pp 165-196.
(31) Zhao, X.; Eden, M.; Levitt, M. H. Chem. Phys. Lett. 2001, 342, 353-361.
(32) Zhao, X.; Sudmeier, J. L.; Bachovchin, W. W.; Levitt, M. H. J. Am. Chem. Soc. 2001, 123, 11097-11098.
(33) Dvinskikh, S. V.; Zimmermann, H.; Maliniak, A.; Sandstrom, D. J. Magn. Reson. 2004, 168, 194-201.
(34) Yang, J.; Tasayco, M. L.; Polenova, T. J. Am. Chem. Soc. 2009, 131, 13690-13702.
(35) Hou, G.; Paramasivam, S.; Byeon, I. J. L.; Gronenborn, A. M.; Polenova, T. Phys. Chem. Chem. Phys. 2010, 12, 14873-14883.
(36) Hou, G. J.; Byeon, I. J. L.; Ahn, J.; Gronenborn, A. M.; Polenova, T. J. Am. Chem. Soc. 2011, 133, 18646-18655.
(37) Byeon, I. J. L.; Hou, G. J.; Han, Y.; Suiter, C. L.; Ahn, J.; Jung, J.;

Byeon, C. H.; Gronenborn, A. M.; Polenova, T. J. Am. Chem. Soc. 2012, 134, 6455-6466.
(38) Sun, S. J.; Siglin, A.; Williams, J. C.; Polenova, T. J. Am. Chem. Soc. 2009, 131, 10113-10126.
(39) Ahmed, S.; Sun, S.; Siglin, A. E.; Polenova, T.; Williams, J. C. Biochemistry 2010, 49, 5083-5085.
(40) Han, Y.; Ahn, J.; Concel, J.; Byeon, I. J. L.; Gronenborn, A. M.; Yang, J.; Polenova, T. J. Am. Chem. Soc. 2010, 132, 1976-1987.
(41) Carravetta, M.; Eden, M.; Zhao, X.; Brinkmann, A.; Levitt, M. H. Chem. Phys. Lett. 2000, 321, 205-215.
(42) Brinkmann, A.; Levitt, M. H. J. Chem. Phys. 2001, 115, 357-384.
(43) Eden, M. Chem. Phys. Lett. 2003, 378, 55-64.
(44) Brauniger, T.; Wormald, P.; Hodgkinson, P. Monatsh. Chem. 2002, 133, 1549-1554.
(45) Bak, M.; Nielsen, N. C. J. Magn. Reson. 1997, 125, 132-139.
(46) Schanda, P.; Meier, B. H.; Ernst, M. J. Am. Chem. Soc. 2010, 132, 15957-15967.
(47) Schanda, P.; Meier, B. H.; Ernst, M. J. Magn. Reson. 2011, 210, 246-259.
(48) Hou, G. J.; Byeon, I. J. L.; Ahn, J.; Gronenborn, A. M.; Polenova, T. J. Chem. Phys. 2012, 137, 134201.

[^0]: Received: August 27, 2012
 Published: January 4, 2013

